We propose a technique for learning single-view 3D object pose estimation models by utilizing a new source of data -- in-the-wild videos where objects turn. Such videos are prevalent in practice (e.g., cars in roundabouts, airplanes near runways) and easy to collect. We show that classical structure-from-motion algorithms, coupled with the recent advances in instance detection and feature matching, provides surprisingly accurate relative 3D pose estimation on such videos. We propose a multi-stage training scheme that first learns a canonical pose across a collection of videos and then supervises a model for single-view pose estimation. The proposed technique achieves competitive performance with respect to existing state-of-the-art on standard benchmarks for 3D pose estimation, without requiring any pose labels during training. We also contribute an Accidental Turntables Dataset, containing a challenging set of 41,212 images of cars in cluttered backgrounds, motion blur and illumination changes that serves as a benchmark for 3D pose estimation.
translated by 谷歌翻译
创建和编辑3D对象的形状和颜色需要巨大的人类努力和专业知识。与3D接口中的直​​接操作相比,诸如草图和涂鸦之类的2D交互对用户通常更自然和直观。在本文中,我们提出了一个通用的多模式生成模型,该模型通过共享的潜在空间耦合2D模式和隐式3D表示。通过提出的模型,通过简单地通过潜在空间从特定的2D控制模式传播编辑,可以实现多功能3D生成和操纵。例如,通过绘制草图来编辑3D形状,通过绘画颜色在2D渲染上重新色彩,或者在一个或几个参考图像中生成特定类别的3D形状。与先前的作品不同,我们的模型不需要每个编辑任务进行重新训练或微调,并且在概念上也很简单,易于实现,对输入域移动的强大,并且可以在部分2D输入中进行多样化的重建。我们在灰度线草图和渲染颜色图像的两种代表性2D模态上评估了我们的框架,并证明我们的方法可以通过以下2D模态实现各种形状的操纵和生成任务。
translated by 谷歌翻译
在培训深层网络中进行部分分割的重要瓶颈是获得详细注释的成本。我们提出了一个框架,以利用粗糙标签,例如图形地面蒙版和关键点位置,这些位置容易用于某些类别以改善零件分割模型。一个关键的挑战是,这些注释是针对不同任务和不同的标签样式收集的,并且不能轻易地映射到零件标签上。为此,我们建议共同学习标签样式与部分分割模型之间的依赖关系,从而使我们能够利用来自不同标签的监督。为了评估我们的方法,我们在Caltech-UCSD鸟类和OID飞机数据集上开发了基准。我们的方法优于基于多任务学习,半监督学习和竞争方法的基准,这些方法依赖于手动设计的损失功能,以利用稀疏的supervision。
translated by 谷歌翻译
基于GAN的生成建模的进展是,社区的推动是为了发现超出图像生成和编辑任务的使用。特别是,最近的几项工作表明,可以重新用诸如零件分割的判别任务重新用来重新用,尤其是当训练数据有限时。但这些改进如何解决自我监督学习的最新进展情况?由此引起这种激励,我们提出了一种基于对比学习的替代方法,并比较它们对标准的几次射击部分分割基准的性能。我们的实验表明,不仅GAN的方法不提供显着的性能优势,它们的多步训练很复杂,几乎是数量级较慢,并且可以引入额外的偏差。这些实验表明,由使用对比学习训练的标准前馈网络捕获的生成模型的感应偏差,例如它们的解开形状和纹理的能力。这些实验表明,目前生成模型中存在的电感偏差,例如它们的解开形状和纹理的能力,通过使用对比学习训练的标准前馈网络充分捕获。
translated by 谷歌翻译
Panoptic Part Segmentation (PPS) unifies panoptic segmentation and part segmentation into one task. Previous works utilize separated approaches to handle thing, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework named Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we make the following contributions: Firstly, we design a meta-architecture that decouples part feature and things/stuff feature, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Secondly, we propose a new metric Part-Whole Quality (PWQ) to better measure such task from both pixel-region and part-whole perspectives. It can also decouple the error for part segmentation and panoptic segmentation. Thirdly, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross attention scheme to further boost part segmentation qualities. We design a new part-whole interaction method using masked cross attention. Finally, the extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results with a significant cost drop of 70% on GFlops and 50% on parameters. Our models can serve as a strong baseline and aid future research in PPS. Code will be available.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
In this work, we focus on instance-level open vocabulary segmentation, intending to expand a segmenter for instance-wise novel categories without mask annotations. We investigate a simple yet effective framework with the help of image captions, focusing on exploiting thousands of object nouns in captions to discover instances of novel classes. Rather than adopting pretrained caption models or using massive caption datasets with complex pipelines, we propose an end-to-end solution from two aspects: caption grounding and caption generation. In particular, we devise a joint Caption Grounding and Generation (CGG) framework based on a Mask Transformer baseline. The framework has a novel grounding loss that performs explicit and implicit multi-modal feature alignments. We further design a lightweight caption generation head to allow for additional caption supervision. We find that grounding and generation complement each other, significantly enhancing the segmentation performance for novel categories. We conduct extensive experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS). The results demonstrate the superiority of our CGG framework over previous OVIS methods, achieving a large improvement of 6.8% mAP on novel classes without extra caption data. Our method also achieves over 15% PQ improvements for novel classes on the OSPS benchmark under various settings.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Brain midline shift (MLS) is one of the most critical factors to be considered for clinical diagnosis and treatment decision-making for intracranial hemorrhage. Existing computational methods on MLS quantification not only require intensive labeling in millimeter-level measurement but also suffer from poor performance due to their dependence on specific landmarks or simplified anatomical assumptions. In this paper, we propose a novel semi-supervised framework to accurately measure the scale of MLS from head CT scans. We formulate the MLS measurement task as a deformation estimation problem and solve it using a few MLS slices with sparse labels. Meanwhile, with the help of diffusion models, we are able to use a great number of unlabeled MLS data and 2793 non-MLS cases for representation learning and regularization. The extracted representation reflects how the image is different from a non-MLS image and regularization serves an important role in the sparse-to-dense refinement of the deformation field. Our experiment on a real clinical brain hemorrhage dataset has achieved state-of-the-art performance and can generate interpretable deformation fields.
translated by 谷歌翻译
It is crucial to evaluate the quality and determine the optimal number of clusters in cluster analysis. In this paper, the multi-granularity characterization of the data set is carried out to obtain the hyper-balls. The cluster internal evaluation index based on hyper-balls(HCVI) is defined. Moreover, a general method for determining the optimal number of clusters based on HCVI is proposed. The proposed methods can evaluate the clustering results produced by the several classic methods and determine the optimal cluster number for data sets containing noises and clusters with arbitrary shapes. The experimental results on synthetic and real data sets indicate that the new index outperforms existing ones.
translated by 谷歌翻译